
Binghamton

University

CS-220

Spring 2016

X86 Stack
Calling Function POV

Computer Systems Section 3.7

Binghamton

University

CS-220

Spring 2016

Stack Frame Memory

Address Value

xFFFF FFF8

xFFFF FFF4 x0000 0004

xFFFF FFF4 x0000 0003

xFFFF FFF0 x0000 0003

xFFFF FFEC x0000 0003

xFFFF FFE8 x0000 0003

xFFFF FFE4 x0000 0003

xFFFF FFE0 x0000 0003

x0000 0004

x0000 0000

Reg Value

ebp xFFFF FFF0

esp xFFFF FFE0

eax x0000 000E

Previous Frame
directly above
current frame

Current Frame
between word at
%ebp and %esp

Binghamton

University

CS-220

Spring 2016

What’s In a Stack Frame?

• Caller’s frame info (pointer to top of caller’s frame)

• Space for saved state

• Space for Local Variable Values

• Space for arguments to lower level functions

• Return address (when calling functions)

Binghamton

University

CS-220

Spring 2016

When I call someone…

• My stack frame is active

• I need to copy argument values to my stack frame

• I need to save state in my stack frame (more later)

• I need to store my return address in my stack frame

• I need to branch to called function’s first instruction

Binghamton

University

CS-220

Spring 2016

Stack when main called

int main() {
int ma;
ma=myfunc(3,4);
return 0;

}

main:

pushl %ebp

movl %esp, %ebp

subl $24, %esp

movl $4, 4(%esp)

movl $3, (%esp)

call myfunc

movl %eax, -4(%ebp)

movl $0, %eax

leave

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xffff ffe4 OS Return@

xffff ffe0

xffff ffdc

xffff ffd8

xffff ffd4

xffff ffd0

xffff ffcc

xffff ffc8

xffff ffc4

xffff ffc0

%ebp

xffff fff0

%esp

xffff ffe4

OS stack
frame

Binghamton

University

CS-220

Spring 2016

Main creates it’s stack frame

int main() {
int ma;
ma=myfunc(3,4);
return 0;

}

main:

pushl %ebp

movl %esp, %ebp

subl $24, %esp

movl $4, 4(%esp)

movl $3, (%esp)

call myfunc

movl %eax, -4(%ebp)

movl $0, %eax

leave

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xffff ffe4 OS Return@

xffff ffe0 xffff fff0

xffff ffdc

xffff ffd8

xffff ffd4

xffff ffd0

xffff ffcc

xffff ffc8

xffff ffc4

xffff ffc0

%ebp

xffff ffe0

%esp

xffff ffc8

OS stack
frame

Binghamton

University

CS-220

Spring 2016

Copy args to bottom of frame

int main() {
int ma;
ma=myfunc(3,4);
return 0;

}

main:

pushl %ebp

movl %esp, %ebp

subl $24, %esp

movl $4, 4(%esp)

movl $3, (%esp)

call myfunc

movl %eax, -4(%ebp)

movl $0, %eax

leave

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xffff ffe4 OS Return@

xffff ffe0 xffff fff0

xffff ffdc

xffff ffd8

xffff ffd4

xffff ffd0

xffff ffcc x0000 0004

xffff ffc8 x0000 0003

xffff ffc4

xffff ffc0

%ebp

xffff ffe0

%esp

xffff ffc8

Binghamton

University

CS-220

Spring 2016

x86 Argument Conventions

• Argument 1 goes at the bottom of the stack frame

• Argument 2 goes above argument 1

• Argument 3 goes above argument 2

• …

Binghamton

University

CS-220

Spring 2016

Question

• Why write arguments upside down? (1 on the bottom)

• Hint… Think about:
printf(“Student %s grade %d\n”,sname,grade);

Binghamton

University

CS-220

Spring 2016

Save Return Address

int main() {
int ma;
ma=myfunc(3,4);
return 0;

}

main:

pushl %ebp

movl %esp, %ebp

subl $24, %esp

movl $4, 4(%esp)

movl $3, (%esp)

call myfunc

movl %eax, -4(%ebp)

movl $0, %eax

leave

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xffff ffe4 OS Return@

xffff ffe0 xffff fff0

xffff ffdc

xffff ffd8

xffff ffd4

xffff ffd0

xffff ffcc x0000 0004

xffff ffc8 x0000 0003

xffff ffc4 x0e10 4278

xffff ffc0

%ebp

xffff ffe0

%esp

xffff ffc8
call myfunc:
push %eip

movl myfunc,%eip

%eip

x0e10 4278

Binghamton

University

CS-220

Spring 2016

Branch to Called Function

int main() {
int ma;
ma=myfunc(3,4);
return 0;

}

main:

pushl %ebp

movl %esp, %ebp

subl $24, %esp

movl $4, 4(%esp)

movl $3, (%esp)

call myfunc

movl %eax, -4(%ebp)

movl $0, %eax

leave

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xffff ffe4 OS Return@

xffff ffe0 xffff fff0

xffff ffdc

xffff ffd8

xffff ffd4

xffff ffd0

xffff ffcc x0000 0004

xffff ffc8 x0000 0003

xffff ffc4 x0e10 4278

xffff ffc0

%ebp

xffff ffe0

%esp

xffff ffc8
call myfunc:
push %eip

movl myfunc,%eip

%eip

x0e10 503e

Binghamton

University

CS-220

Spring 2016

When I am called…

• My caller’s stack frame is still active

• I need to save information about my callers frame

• I need to create my own stack frame

Binghamton

University

CS-220

Spring 2016

Branch to Caller Complete

int myfunc(int a,int b) {

int c;

c = a + 3;

c = c + b;

return c;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl $3, %eax

movl %eax, -4(%ebp)

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave

ret

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xffff ffe4 OS Return@

xffff ffe0 xffff fff0

xffff ffdc

xffff ffd8

xffff ffd4

xffff ffd0

xffff ffcc x0000 0004

xffff ffc8 x0000 0003

xffff ffc4 x0e10 4278

xffff ffc0 xffff ffe0

%ebp

xffff ffe0

%esp

xffff ffc4

%eip

x0e10 5042

Binghamton

University

CS-220

Spring 2016

Myfunc Execution
here.

Binghamton

University

CS-220

Spring 2016

Save return value

int myfunc(int a,int b) {

int c;

c = a + 3;

c = c + b;

return c;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl $3, %eax

movl %eax, -4(%ebp)

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave

ret
%eax

x0000 000a

%eax holds
return
value

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xffff ffe4 OS Return@

xffff ffe0 xffff fff0

xffff ffdc

xffff ffd8

xffff ffd4

xffff ffd0

xffff ffcc x0000 0004

xffff ffc8 x0000 0003

xffff ffc4 x0e10 4278

xffff ffc0 xffff ffe0

%ebp

xffff ffc0

%esp

xffff ff??

%eip

x0e10 5042

Binghamton

University

CS-220

Spring 2016

Unwind Frame Stack

int myfunc(int a,int b) {

int c;

c = a + 3;

c = c + b;

return c;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl $3, %eax

movl %eax, -4(%ebp)

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave

ret
%eax

x0000 000a

%eax holds
return
value

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xffff ffe4 OS Return@

xffff ffe0 xffff fff0

xffff ffdc

xffff ffd8

xffff ffd4

xffff ffd0

xffff ffcc x0000 0004

xffff ffc8 x0000 0003

xffff ffc4 x0e10 4278

xffff ffc0 xffff ffe0

%ebp

xffff ffe0

%esp

xffff ffc4

%eip

x0e10 505c

Binghamton

University

CS-220

Spring 2016

Return

int myfunc(int a,int b) {

int c;

c = a + 3;

c = c + b;

return c;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl $3, %eax

movl %eax, -4(%ebp)

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave

ret
%eax

x0000 000a

%eax holds
return
value

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xffff ffe4 OS Return@

xffff ffe0 xffff fff0

xffff ffdc

xffff ffd8

xffff ffd4

xffff ffd0

xffff ffcc x0000 0004

xffff ffc8 x0000 0003

xffff ffc4 x0e10 4278

xffff ffc0 xffff ffe0

%ebp

xffff ffe0

%esp

xffff ffc8

%eip

x0e10 4278

Binghamton

University

CS-220

Spring 2016

After Return…

int main() {
int ma;
ma=myfunc(3,4);
return 0;

}

main:

pushl %ebp

movl %esp, %ebp

subl $24, %esp

movl $4, 4(%esp)

movl $3, (%esp)

call myfunc

movl %eax, -4(%ebp)

movl $0, %eax

leave

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xffff ffe4 OS Return@

xffff ffe0 xffff fff0

xffff ffdc

xffff ffd8

xffff ffd4

xffff ffd0

xffff ffcc x0000 0004

xffff ffc8 x0000 0003

xffff ffc4 x0e10 4278

xffff ffc0

%ebp

xffff ffe0

%esp

xffff ffc8

%eip

x0e10 4278

%eax

x0000 000a

%eax holds
return
value

Binghamton

University

CS-220

Spring 2016

Handle Return Value

int main() {
int ma;
ma=myfunc(3,4);
return 0;

}

main:

pushl %ebp

movl %esp, %ebp

subl $24, %esp

movl $4, 4(%esp)

movl $3, (%esp)

call myfunc

movl %eax, -4(%ebp)

movl $0, %eax

leave

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xffff ffe4 OS Return@

xffff ffe0 xffff fff0

xffff ffdc x0000 000a

xffff ffd8

xffff ffd4

xffff ffd0

xffff ffcc x0000 0004

xffff ffc8 x0000 0003

xffff ffc4 x0e10 4278

xffff ffc0

%ebp

xffff ffe0

%esp

xffff ffc8

%eip

x0e10 427a

%eax

x0000 000a

%eax holds
return
value

Binghamton

University

CS-220

Spring 2016

Set Main’s Return Value

int main() {
int ma;
ma=myfunc(3,4);
return 0;

}

main:

pushl %ebp

movl %esp, %ebp

subl $24, %esp

movl $4, 4(%esp)

movl $3, (%esp)

call myfunc

movl %eax, -4(%ebp)

movl $0, %eax

leave

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xffff ffe4 OS Return@

xffff ffe0 xffff fff0

xffff ffdc x0000 000a

xffff ffd8

xffff ffd4

xffff ffd0

xffff ffcc x0000 0004

xffff ffc8 x0000 0003

xffff ffc4 x0e10 4278

xffff ffc0

%ebp

xffff ffe0

%esp

xffff ffc8

%eip

x0e10 427E

%eax

x0000 0000

%eax holds
return
value

Binghamton

University

CS-220

Spring 2016

Unwind Main’s Stack Frame

int main() {
int ma;
ma=myfunc(3,4);
return 0;

}

main:

pushl %ebp

movl %esp, %ebp

subl $24, %esp

movl $4, 4(%esp)

movl $3, (%esp)

call myfunc

movl %eax, -4(%ebp)

movl $0, %eax

leave

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xffff ffe4 OS Return@

xffff ffe0 xffff fff0

xffff ffdc x0000 000a

xffff ffd8

xffff ffd4

xffff ffd0

xffff ffcc x0000 0004

xffff ffc8 x0000 0003

xffff ffc4 x0e10 4278

xffff ffc0

%ebp

xffff fff0

%esp

xffff ffe4

%eax

x0000 0000

Binghamton

University

CS-220

Spring 2016

X86 Calling Conventions

On Entry

• Save caller’s base pointer

• Create my stack frame

• Initialize local variables

On Return

• Use return value in %eax

On Call

• Save Arguments

• Save Return Address

• Branch to Callee

On Exit

• Save return value in %eax

• Return my stack frame

• Restore caller’s stack frame

Binghamton

University

CS-220

Spring 2016

Register Resources

• Single set of registers used by all functions

• When a caller invokes a callee…
• Should it assume the called function will not change registers?

• If callee can change registers, caller cannot assume values won’t be
changed.

• IBM conventions...
• Callee stores all register values on entry

• Callee restores all register values before return

• Wasteful – store all registers whether you need them or not

• X86 conventions… some registers are managed by caller, some by callee…

Binghamton

University

CS-220

Spring 2016

Managing Registers

REG Can I change? Keeps Value over Calls?

%eax Yes – used for return value No – used for return value

%ecx Yes – caller assumes these may
change

No – called function may change
these%edx

%edi
No – Caller expects these to be

unchanged
Yes – called function must keep

these values
%esi

%ebx

%ebp
Managed by calling conventions which save/restore stack frames

%esp

Binghamton

University

CS-220

Spring 2016

Managing Registers

REG Can I change? Keeps Value over Calls? Classification

%eax Yes – used for return value If I need these I must save
before I call and restore on

return
Caller-saved%ecx Yes – caller assumes these

may change%edx

%edi If I use these, I must save
caller’s values on entry

and restore on exit

Yes – called function must
keep these values

Callee-Saved%esi

%ebx

%ebp
Managed by calling conventions which save/restore stack frames

%esp

Binghamton

University

CS-220

Spring 2016

Managing Registers

• Use %eax, %ecx, %edx for localized values

• Use %edi, %esi, %ebx if you need values over calls

• If you use %edi, %esi, %ebx (callee-saved regs) save on entry,
restore on exit

• If you need to save more reg values over calls, save whichever of
%eax, %ecx, %edx you need (caller-saved regs) before you call,
and restore after you call

Binghamton

University

CS-220

Spring 2016

X86 Calling Conventions (complete)

On Entry
• Push caller’s ebp

• Push callee-saved regs if req.

• Create (data part) of my stack frame
• Initialize local variables

On Return

• Pop caller-saved regs if req.

• Use return value in %eax

On Call
• Push caller-saved regs if req.
• Save Arguments
• Push Return Address
• Branch to Callee

On Exit
• Save return value in %eax
• Return (data part of) stack frame
• Pop callee save regs if req.
• Pop caller’s ebp
• Pop return address

Binghamton

University

CS-220

Spring 2016

Complete Stack Frame Contents
(%ebp) Caller’s %ebp required!

Caller’s %esi if I’m going to use %esi

Caller’s %ebx if I’m going to use %ebx

Caller’s %edi if I’m going to use %edi

padding So local vars start on address % by 16

Local Variables if needed

….

My %eax if I’m calling and need old value

My %ecx if I’m calling and need old value

My %edx if I’m calling and need old value

Parameter n if needed

…

Parameter 1

(%esp) Return Address if I’m calling

and $-16,%esp
-16=xFFFF FFF0

