X86 Stack
Calling Function POV

Computer Systems Section 3.7

Binghamton CS-220

University Spring 2016

Stack Frame Memory

Reg , . Previous Frame
ebp xFFFF FFF0 | ——— — | | directly above
esp xFFFF FFEO | current frame
eax x0000 000E xFFFF FFEC x00000003 | ||

xFFFF FFE8 x0000 0003
xFFFF FFE4 x0000 0003

xFFFF FFEO x0000 0003
Current Frame
between word at
%ebp and %esp
x0000 0004
x0000 0000

Binghamton CS-220

University Spring 2016

What's In a Stack Frame?

* Caller’s frame info (pointer to top of caller’s frame)
* Space for saved state

* Space for Local Variable Values

* Space for arguments to lower level functions

* Return address (when calling functions)

Binghamton CS-220

University Spring 2016

When | call someone...

* My stack frame is active

* [need to copy argument values to my stack frame

* [need to save state in my stack frame (more later)
* [need to store my return address in my stack frame

* | need to branch to called function’s first instruction

Binghamton CS-220

University Spring 2016

Stack when main callec Memory
main: OS stack <ffff fif0 — xffff fff0 x00c0 002c
' frame xffff ffec x00c0 0014
pushl %ebp
xffff ffe8 x0000 0003
movl %esp, %ebp e
xffff ffeq —> XHLie eturn@
subl $24, %esp FEEF £al
int main() { mov! $4, 4(%esp) <ffff ffdc
int ma; movl $3, (%esp) Xffff ffd8
ma= myfu nc(3,4), call myfunC xffff ffd4
return O movl %eax, -4(%ebp) xffff ffd0
’ movl $0, Y%eax Xfff ffc
5 leave XfEFf ffc8
XFEFF ffc4
XfEFF ffcO

Binghamton CS-220

University Spring 2016

Main creates it's stack frame —

xffff fff0 x00c0 002c¢
xffff ffec x00c0 0014
xftff ffe8 x0000 0003
xffff ffe4 OS Return@
xffff ffe0 xffff fff0

main:

/pushl %ebp
movl %esp, %ebp
subl $24, %esp

int main() { movl| $4, 4(%eSp) <fEEf ffdc
int ma; movl $3, (%esp) xffff ffd8
ma= myfu nc(3,4); call myfunc xffff ffd4
return O: movl %eax, -4(%ebp) xffff ffd0

} ’ movl $0, %eax xffff ffcc
leave xffff ffcg — xffff ffc8

XFEFF ffcd

xfftf ffcO

Binghamton

CS-220

University

Copy args to bottom of frame

main:

int main() {
Int Mma;
ma=myfunc(3,4);
return O;

§

(= =)

Spring 2016

Memory

xftff fff0

x00c0 002c

xftff ffec

x00c0 0014

pushl %ebp

xffff ffe8

x0000 0003

movl %esp, %ebp

xftff ffe4

OS Return@

subl $24, %esp XfFff ffe) —>

xfttf ffe0

xfftf {ff0

movl $4, 4(%esp)

xffff ffdc

movl $3, (%esp)

xffff ffd8

call myfunc

xftff ffd4

xfftf ffd0

movl %eax, -4(%ebp)

mov| $0, %eax %esp

i

-x0000 0004

leave xffff fic8 —

xfftf ffc8

x0000 0003

xfftf ffc4

xfftf ffcO

Binghamton CS-220

University Spring 2016

Xx86 Argument Conventions

* Argument 1 goes at the bottom of the stack frame
* Argument 2 goes above argument 1
* Argument 3 goes above argument 2

Binghamton CS-220

University Spring 2016

Question

* Why write arguments upside down? (1 on the bottom)

* Hint... Think about:
printf(“Student %s grade %d\n",sname,grade);

CS-220

Binghamton
University
Save Return Address
main:

pushl %ebp

movl %esp, %ebp

subl $24, %esp
int main() { movl $4, 4(%esp)
int ma; movl $3, (%esp)

ma=myfunc(3,4); [call

return O;

myfunc

§

call myfunc: leave

push %eip

movl myfunc,%eip

/ X0e104278

Spring 2016

Memory

xftff fff0

x00c0 002c

xffff ffec

x00c0 0014

xffff ffe8

x0000 0003

xftff ffe4

OS Return@

xffff ffeQ =

xfttf ffe0

xftff fff0

xffff ffdc

xffff ffd8

xftff ffd4

xfftf ffd0

xfftf ffcc

x0000 0004

xfftf ffc8

x0000 0003

xffff ficg§

- xffff ffc4

x0e10 4278

xfftf ffcO

CS-220

Binghamton
University
Branch to Called Function
main:

pushl %ebp

movl %esp, %ebp
subl $24, %esp
movl $4, 4(%esp)
movl $3, (Y%es

call myfiuﬁm/
ovl %eax, -4(%ebp)

movl $0, %eax
leave

int main() {

Int Mma;
ma=myfunc(3,4);
return O;

§

call myfunc:
push %eip

movl myfunc,%eip

Spring 2016

Memory

xftff fff0

x00c0 002c

xffff ffec

x00c0 0014

xffff ffe8

x0000 0003

xftff ffe4

OS Return@

xffff ffeQ =

xfttf ffe0

xftff fff0

xffff ffdc

xffff ffd8

x0e10 503e

xftff ffd4

xfftf ffd0

xfftf ffcc

x0000 0004

xfftf ffc8

x0000 0003

xffff ffc8 ~

xftff ffc4

x0e10 4278

xfftf ffcO

Binghamton CS-220

University Spring 2016

When | am called...

* My caller’s stack frame is still active
* [need to save information about my callers frame
* [need to create my own stack frame

Binghamton

CS-220

University

Branch to Caller Complete

myfunc:

int myfunc(int a,int b) {
Int C;
c=a-+ 3;
C=cC+ b;
return c;

pushl
movl
subl
movl
addl
mov/|
movl
addl
mov/|
leave
ret

%ebp

%esp, Y%ebp
$16, %esp
8(%ebp), Y%eax
$3, %eax

%eax, -4(%ebp)
12(%ebp), %oeax
%eax, -4(%ebp)
-4(%ebp), Y%eax

Spring 2016

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xftff ffe4 OS Return@

xffff ffeQ =

xftff ffe0 xfftf fff0

xffff ffdc

xffff ffd8

x0e10 5042

xftff ffd4

xfftf ffd0

xffff ffcc x0000 0004

xffff ffc8 x0000 0003

xffff fic4 =

xftff ffc4 x0el0 4278

xffff ffcO | xftff ffeO

Myfunc Execution
here.

Binghamton CS-220

University Spring 2016

Save return value T—

xffff fff0 x00c0 002c¢
xftff ffec x00c0 0014
xftff ffe8 x0000 0003
xffff ffe4 OS Return@

myfunc:
pushl %ebp
movl %esp, %ebp
subl $16, %esp

int myfunc(int a,int b) { movl 8(%ebp), %eax

int c; addl $3, %eax _
c=a+ 3; movl %eax, -4(%ebp)
cC=c+ b movl 12(%ebp), %eax x0e10 5042
return c;

-4(%ebp), Yoeax

xffff ffcO
I
return

ftff f£72?
x0000 000a e X \

xftff ffcO xffff ffe0

CS-220

Spring 2016

Binghamton
University
Unwind Frame Stack
myfunc:

pushl %ebp
movl %esp, %ebp
subl $16, %esp

int myfunc(int a,int b) { movl 8(%ebp), %eax

int C; addl $3, %eax
c=a+ 3 movl %eax, -4(%ebp)
cC=c4+ b movl 12(%ebp), %ea

addl %eax, -4(%e0p)
movl -4(%e
ﬂeave

return c;

ret

%eax holds

return
x0000 000a
value

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xftff ffe4 OS Return@

xffff ffeQ =

xftff ffe0 xfftf fff0

xffff ffdc

xffff ffd8

x0e10 505c¢

xftff ffd4

xfftf ffd0

xffff ffcc x0000 0004

xffff ffc8 x0000 0003

xffff ffc4 =

xftff ffc4 x0e10 4278

xftff ffcO = xffff ffe0

CS-220

Spring 2016

%ebp
%esp, Y%ebp
$16, %esp
8(%ebp), Y%eax
$3, %eax

%eax, -4(%ebp)
12(%ebp), %oeax
%eax, -4(%ebp
-4(%ebp), Yea

Binghamton
University
Return
myfunc:
pushl
movl
subl
int myfunc(int a,intb) { movl
Int C; add|
c=a+ 3; mov|
Cc=c+ b; mov|
return c: add|
} movl
leave
%eax holds [ret

x0000 000a

return
value

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xftff ffe4 OS Return@

xffff ffeQ =

xftff ffe0 xfftf fff0

xffff ffdc

xffff ffd8

x0e10 4278

xftff ffd4

xfftf ffd0

xffff ffcc x0000 0004

xffff ffc§

xffff ffc8 x0000 0003

xffff ffc4 x0e10 4278

xftff ffcO = xffff ffe0

CS-220

Spring 2016

Binghamton
University
After Return...
main:

int main() {
Int Mma;
ma=myfunc(3,4);
return O;

§

%eax holds

return
value

x0000 000a

Memory

xftff fff0

x00c0 002c

xffff ffec

x00c0 0014

pushl %ebp

xffff ffe8

x0000 0003

movl %esp, %ebp

xftff ffe4

OS Return@

subl $24, %esp XfFff ffe) —>

xfttf ffe0

xftff fff0

movl $4, 4(%esp)

xffff ffdc

movl $3, (%esp)

xffff ffd8

call myfunc [/ X0e104278

xftff ffd4

movl %eax, -4(%ebp)

xfftf ffd0

movl $0, %eax %esp

xfftf ffcc

x0000 0004

leave xffff ffc8 —

xfftf ffc8

x0000 0003

xfftf ffc4

x0e10 4278

xfftf ffcO

CS-220

Spring 2016

Binghamton
University
Handle Return Value
main:

pushl %ebp
movl %esp, %ebp
subl $24, %esp
int main() { movl $4, 4(%esp)
int ma; movl $3, (%esp)

ma=myfunc(3,4); call myfunc
return O; [movl %eax, -4(%

} movl $0, %eax
leave

%eax holds

return
x0000 000a
value

Memory

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

xffff ffe8 x0000 0003

xftff ffe4 OS Return@

xffff ffeQ =

xftff ffe0 xfftf fff0

xffff ffdc x0000 000a

xffff ffd8

x0e10 427a

xftff ffd4

xfftf ffd0

xffff ffcc x0000 0004

xffff ffc§ =~

xffff ffc8 x0000 0003

xffff ffc4 x0e10 4278

xfftf ffcO

CS-220

Binghamton
University
Set Main’s Return Value
main:

pushl %ebp
movl %esp, %ebp

subl $24, %esp
int main() { movl $4, 4(%esp)
int ma; movl $3, (%esp)
ma=myfunc(3,4); cal mylunc
return O movl %eax, -4(%ehp)
} ! movl $0, %eax
V

%eax holds

return
value

x0000 0000

Spring 2016
Memory
xffff fff0 x00c0 002c¢
xffff ffec x00c0 0014
xffff ffe8 x0000 0003
xffff ffe4 OS Return@
xffff ffeQ =" xffff ffe0 xffff fff0
xffff ffdc x0000 000a
XFEE A8
x0e10 427E xfftf ffd4
xfftf ffd0
%esp xffff ffcc x0000 0004
<ffff ffcg = xffff ffic8 x0000 0003
xffff ffc4 x0e10 4278
xffff ffcO

Binghamton

CS-220

University

Unwind Main’s Stack Frameprm

main:

int main() {
Int Mma;
ma=myfunc(3,4);
return O;

§

x0000 0000

Spring 2016

Memory

xffff fff0 =

xffff fff0 x00c0 002c

xffff ffec x00c0 0014

pushl %ebp

xfftf ffe8 x0000 0003

movl %esp, %ebp xffff ffed —P

xffff ffe4 OS Return@

subl $24, %esp

xffff ffe0 | xffff fff0

movl $4, 4(%esp)

xffff ffdc x0000 000a

movl $3, (%esp)

xffff ffd8

call myfunc

xffff ffd4

xffff ffd0

movl %eax, -4(%ebp)
movl $0, %e

xffff ffcc x0000 0004

ﬂeave

xffff ffc8 | x0000 0003

xffff ffc4 x0e10 4278

xfftf ffcO

Binghamton CS-220

University Spring 2016

X86 Calling Conventions

On Entry On Return
* Save caller’s base pointer * Use return value in %eax

* Create my stack frame
* Initialize local variables

On Call On EXlt
» Save Arguments * Save return value in %eax
e Save Return Address * Return my stack frame

e Branch to Callee * Restore caller’s stack frame

Binghamton CS-220

University Spring 2016

Register Resources

* Single set of registers used by all functions

* When a caller invokes a callee...
* Should it assume the called function will not change registers?

* If callee can change registers, caller cannot assume values won’t be
changed.
* IBM conventions...
 Callee stores all register values on entry

 Callee restores all register values before return
* Wasteful - store all registers whether you need them or not

* X86 conventions... some registers are managed by caller, some by callee...

Binghamton CS-220

University Spring 2016

Managing Registers

REG CanI change? Keeps Value over Calls?

Y%eax Yes - used for return value No - used for return value

Yoecx Yes - caller assumes these may = No - called function may change

%edx change these

%edi

0% esi No - Caller expects these to be Yes - called function must keep
] unchanged these values

%ebx

%ebp

o Managed by calling conventions which save /restore stack frames
oesp

Binghamton CS-220

University Spring 2016

Managing Registers

Canl change? Keeps Value over Calls?

%eax Yes - used for returnvalue [f[need these I must save

%ecx Yes - caller assumes these beforel call and restoreon Caller-saved
Y%edx may change return

- [f I use these, I must save

caller’s values on entry
. keep these values
- and restore on exit

%ebp
%esp

Yes - called function must

Managed by calling conventions which save /restore stack frames

CS-220

Binghamton
Spring 2016

University

Managing Registers

e Use %eax, Yecx, Yedx for localized values
* Use %edi, %esi, %ebx if you need values over calls

* If you use %edi, %esi, %ebx (callee-saved regs) save on entry,
restore on exit

* If you need to save more reg values over calls, save whichever of
%eax, %ecx, Y%edx you need (caller-saved regs) before you call,
and restore after you call

Binghamton CS-220

University Spring 2016

X86 Calling Conventions (complete)

On Entry On Return

* Push caller’s ebp * Pop caller-saved regs if req.
* Push callee-saved regs if req.

* Create (data part) of my stack frame
* Initialize local variables

e Use return value in %eax

On Call On Exit

* Push caller-saved regs if req. * Save return value in %eax

» Save Arguments * Return (data part of) stack frame
e Push Return Address * Pop callee save regs if req.

* Branch to Callee * Pop caller’s ebp

* Pop return address

Binghamton

CS-220

University

Complete Stack Frame Contents

(%ebp)

(%esp)

Caller’s %ebp
Caller’s %esi
Caller’s %ebx
Caller’s %edi
padding

Local Variables

My %eax
My %ecx
My %edx
Parameter n

Parameter 1
Return Address

required!

if 'm going to use %esi

if 'm going to use %ebx

if 'm going to use %edi

So local vars start on address % by 16

if needed

if 'm calling and need old value
if I'm calling and need old value
if I'm calling and need old value

if needed

if 'm calling

Spring 2016

